Saharan dust composition on the way to the Americas and potential impacts on atmosphere and biosphere

K. Kandler
The Saharan dust plume over the Western Atlantic Ocean

The Saharan dust plume on its arrival over the Caribbean

daily averaged surface dust concentration (in µg\(^{-3}\)), modelled for 23 June 1993

Case study of a dust event from Bodélé depression reaching South America

daily lidar scans starting Feb 19, 2008

from Ben-Ami et al. 2010
doi: 10.5194/acp-10-7533-2010
Dust composition and its dependencies, interaction and potential impacts

DEPOSITION
- wet processing cloud impact
- indirect radiative impact
- terrestrial ecosystem impact
- human/plant/animal health issues

TRANSPORT
- terrestrial radiative impact
- heterogeneous chemistry
- wet removal
- dry removal
- marine ecosystem impact

EMISSION
- solar radiative impact photochemistry
- anthropogeneous/ biomass burning aerosol admixture
- geological basement
- type of weathering surface transport
- chemical processing
- emission meteorology
Implications for radiation transfer – dust radiative forcing

Top-of-the-atmosphere (TOA) net radiative forcing for different dust mineralogical compositions\(^{(1)}\)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Cooling (W/m²)</th>
<th>Warming (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% Clay, 5% Quartz, 5% Hematite</td>
<td>-30</td>
<td>0</td>
</tr>
<tr>
<td>75% Clays, 20% Quartz, 5% Hematite</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>80% Clays, 20% Hematite</td>
<td>-10</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{(1)}\) data from Sokolik et al. 1999, doi: 10.1029/1998JD200048

Shortwave forcing case study, including:
- measured aerosol size distribution
- measured vertical aerosol distribution
- measured planetary surface albedo
- measured particle shape
- derived particle refractive index
- derived particle single scattering albedo

Surface cooling → decrease in sea surface temperature → change in tropical cyclone activity\(^{(3)}\)

Planetary surface\(^{(2)}\)

Top of the atmosphere\(^{(2)}\)

- over ocean
- over desert
Implications for radiation transfer – dust composition and terrestrial radiation

Mass extinction efficiency for different minerals in the atmospheric window wavelength region(1)

Thermal infrared radiative forcing for different dust compositions(2)

1Hansell et al. 2011, doi:10.5194/acp-11-1527-2011 2Data from Sokolik et al. 1998, doi: 10.1029/98JD00049
Dust composition and clouds

Modification by clouds

- Uptake of *gaseous* precursor species via *aqueous chemistry*
- Aqueous reaction with *(acidic)* species
- Composition-selective removal by wet deposition
- Internal mixing by droplet/particle *scavenging* or *coalescence*

Impact on clouds

- Fresh dust particles can act as *cloud condensation nuclei* (dependency on mineralogy)\(^1\)
- Dust particles as *giant cloud condensation nuclei* (GCCN) may alter precipitation\(^2\)
- Increase of *ice nucleus* (IN) concentrations, IN at higher temperatures\(^3\)
- Mineral dust contributes by 21 to 84% to the IN concentration\(^4\) over the Amazon basin
- In a case study, more than 79% of cloud droplets at Cape Verde contained dust particles\(^5\)
- Water vapor competition of GCCN versus smaller dust particles makes precipitation impact depending on cloud conditions (i.e. liquid water content, but also gaseous chemistry)\(^6\) → impact is ambiguous, depending on cloud microstructure\(^7\)

- Short-lived *convective clouds* are most *sensitive*\(^6\)
- *Indirect impact* through change of atmospheric dynamics by *radiative* impact (surface cooling, increase in atmospheric stability)\(^6\)

1. Kumar et al. 2011, 10.5194/acp-11-3527-2011
2. Yin et al. 2000, 10.1016/S0169-8095(99)00046-0
Dust and ecosystems

Marine ecosystems

- Fe (and possibly, P) can limit bio-productivity on Oceans directly or by co-limiting N fixation\(^{(1,2)}\)
- Saharan dust is made responsible for the degradation of coral reefs\(^{(3)}\), but possible pathways are still explored\(^{(4)}\)
- Toxic red tides in the Gulf of Mexico need dust Fe (and maybe P) input to start\(^{(5)}\)
- On the nature (and impact) of P on marine ecosystems “remarkably little is known“\(^{(2)}\)
- P input by dust can increase bacterial activity in Mediterranean freshwater ecosystems\(^{(6)}\)

Terrestrial ecosystems

- Forest ecosystems on extremely leached soils (like Amazonia) are short in nutrients (P, K) which can be provided by dust fall\(^{(7,8)}\)
- For example, half of the total inputs to soil-and-biomass P can be derived from dust in Puerto Rico’s Luquillo Mountains\(^{(9)}\)
- Forests on less leached soils can have deficit of Ca and K\(^{(10)}\)
- A tropical Andean forest in Ecuador receives considerable amounts of Ca and Mg from Saharan dust\(^{(11)}\)

\(^{1}\)Jickells et al. 2005, doi: 10.1126/science.1105959
\(^{2}\)Okin et al. 2011, doi: 10.1029/2010GB003858
\(^{4}\)Rypien 2008, doi: 10.3354/meps07600
\(^{5}\)Walsh et al. 2006, doi: 10.1029/2004JC002813
\(^{6}\)Reche et al. 2009, doi: 10.4319/lo.2009.54.3.0869
\(^{8}\)Okin et al. 2004, doi: 10.1029/2003GB002145
\(^{9}\)Pett-Ridge 2009, doi: 10.1007/s10533-009-9308-x
\(^{10}\)Bond 2010, doi: 10.1007/s11104-010-0440-0
Emission stage – sources, composition, variation

- Emission
- Transport
- Deposition

- Wet processing cloud impact
- Indirect radiative impact
- Terrestrial radiative impact
- Solar radiative impact photochemistry
- Heterogeneous chemistry
- Dry removal
- Sea-salt interaction
- Wet removal
- Anthropogeneous/biomass burning aerosol admixture
- Geological basement type of weathering surface transport
- Chemical processing emission meteorology

- Terrestrial ecosystem impact
- Human/plant/animal health issues
- Marine ecosystem impact
Emission stage – general mineralogy

- Dust composition is highly variably
- Quartz and phyllosilicates are omnipresent
- Phyllosilicates might be
 - (frequently reported) kaolinite, illite
 - (less frequently) chlorite, muscovite, montmorillonite, biotite, palygorskite, smectites and inter-stratified clay minerals
- Mostly, additional silicates are reported
 - (frequently) albite, anorthite, K-feldspars
 - (less frequently) chrysotile, orthoclase
- Calcite, dolomite and sometimes apatite are found in varying abundance
- Hematite, goethite and sometimes ilmenite are the main iron compounds
- Sulfates, nitrates and chlorides are usually not reported with their mineralogical denomination (some of them might [fractionally] recrystallize depending on environmental conditions)
- In addition, a plethora of other mineral species are reported, including biological debris (diatomite), metal oxides (rutile, periclase, baddeleyite, spinel), iron-rich minerals (lepidocrocite, limonite), carbonates (aragonite, magnesite), sulfates (anhydrite, gypsum, thenardite, mirabilite, mascagnite, glauberite), silicates (chloritoid, leucite, forsterite, zircon, enstatite) and graphite
Emission stage – sources and composition

Composition of Saharan dust and topsoils characterized by (Ca+Mg)/Fe ratio

Major source regions compiled from different techniques are identified

Formenti et al. 2011, doi: 10.5194/acp-11-8231-2011

1 Scheuvens et al., in preparation for Earth. Sci. Reviews – details on original literature are given there

2 Formenti et al. 2011, doi: 10.5194/acp-11-8231-2011
Mineralogical composition as function of source regions – an example

Quartz
K-feldspar
Plagioclase
Calcite
Illite (1M)
Kaolinite
Smectites
Chlorite
Gypsum
Halite
Hematite
Rutile

Dust intensity

Mai 13
Mai 14
Mai 15
Mai 16
Mai 17
Mai 18
Mai 19
Mai 20
Mai 21
Mai 22
Mai 23
Mai 24
Mai 25
Mai 26
Mai 27
Mai 28
Mai 29
Mai 30
Mai 31
Jun 01
Jun 02
Jun 03
Jun 04
Jun 05
Jun 06

Jan 14
Jan 15
Jan 16
Jan 17
Jan 18
Jan 19
Jan 20
Jan 21
Jan 22
Jan 23
Jan 24
Jan 25
Jan 26
Jan 27
Jan 28
Jan 29
Jan 30
Jan 31
Feb 01
Feb 02
Feb 03
Feb 04
Feb 05
Feb 06
Feb 07
Feb 08
Feb 09

DU1
DU2
DU3

Dust phases by meteorology and satellite obs. →

Change in mineralogical composition with particle size seen by chemical fingerprints

\[
\begin{array}{cccc}
\text{Al/Si} & \text{Mg+Fe}/\text{Si} & \text{Na+K+Ca}/\text{Si} \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 \\
\end{array}
\]

Change in mineralogical composition with particle size seen by chemical fingerprints

Change in mineralogical composition with particle size seen by chemical fingerprints

Data from Kandler et al. 2011, doi: 10.1111/j.1600-0889.2011.00550.x
Bodélé depression – “a single spot”\(^{(1)}\)?

\(^1\)Koren et al. 2006, doi: 10.1088/1748-9326/1/1/014005

Bodélé depression – “a single spot”(1)?

Data from Bristow et al. 2010, doi: 10.1029/2010GL043486

Fe/Ca ratio

Image (C) Google/Cnes/Spot Image

1Koren et al. 2006, doi: 10.1088/1748-9326/1/1/014005

Variability across the Ocean – Fe/Ca as a tracer

Atomic ratio of Fe/Ca and its geometric standard deviation

4 DUST, Paris et al. 2010, 10.5194/acp-10-4273-2010
6 Kandler et al. 2007, doi: 10.1016/j.atmosenv.2007.06.047
8 Formenti et al. 2003, doi: 10.1029/2002JD002648
9 Reid et al. 2003, doi: 10.1029/2002JD002935
Variability across the Ocean – Fe/Ca as a tracer

Atomic ratio of Fe/Ca and its geometric standard deviation

Bristow et al. 2010, doi: 10.1029/2010GL043486
Klaver et al. 2011, doi: 10.1002/qj.889
DUST, Paris et al. 2010, 10.5194/acp-10-4273-2010
Kandler et al. 2007, doi: 10.1016/j.atmosenv.2007.06.047
Reid et al. 2003, doi: 10.1029/2002JD002935
Transport stage – selective removal and admixture
Transport stage – selective removal and admixture

By sedimentation
- The largest particles > 50 µm are quickly removed
 → relative abundance of quartz and feldspars decreases, that of clay minerals increases
 (carbonate contents are usually not strongly impacted)
- Direct result: soil composition does not necessarily reflect generated dust composition, even close to source

By admixing
- For example, sulfate and soot particles may be added do dust aerosol (or vice versa) and form an external mixture, which than can affect its radiative properties

By selective wet deposition
- Dust particles containing larger amounts of soluble material may be preferentially removed by rain-out / washout
- Dust particles more sensitive to chemical processing (i.e. carbonates to nitric acid) may quickly grow into large droplets under humid conditions and can be removed
Average Chemical composition at different locations

Morocco\(^{(1)}\)

Tenerife\(^{(2)}\) (SAL transport)

Cape Verde\(^{(3)}\) (MBL transport)

\(^{2}\text{Kandler et al. 2007, doi: 10.1016/j.atmosenv.2007.06.047}\)
\(^{3}\text{Kandler et al. 2011, doi: 10.1111/j.1600-0889.2011.00550.x}\)
Transport stage – processing and mixing

- Wet processing
- Cloud impact
- Indirect radiative impact
- Sea-salt interaction
- Wet removal
- Heterogeneous chemistry
- Solar radiative impact
- Photochemistry
- Anthropogeneous/biomass burning
- Aerosol admixture
- Dry removal
- Geological basement
- Type of weathering
- Surface transport
- Chemical processing
- Emission
- Meteorology
- Marine ecosystem impact
- Human/plant/animal health issues
- Terrestrial ecosystem impact
Transport stage – processing

Processes affecting dust composition

- Uptake of non-dust species by mechanical mixing (sea-salt mixture not found at Cape Verde\(^1\),\(^2\), but reported in America\(^3\); mixing seems most efficient for the transition size range 0.5 to 2 µm particle diameter)
- Condensation of secondary species (e. g., organics) on the dust surface\(^4\)
- Reaction of dust with (acidic) species, depending on dust composition (e. g., calcic vs. silicic)\(^5\)
- SO\(_2\) can be oxidized in dry state on dust surface in presence of ozone\(^6\),\(^7\), but effect saturates\(^8\),\(^9\)
- Many pathways in aqueous state from SO\(_2\) to sulfate, efficiency depending on conditions (like gaseous concentrations, cloud water pH, photochemistry...)\(^5\),\(^10\)

Resulting changes in dust properties

- Increase in sedimentation removal by increase in particle size\(^11\)
- Deposition of hygroscopic matter on dust particles increases CCN ability\(^12\)
- Sulfuric acid/sulfate and some organic matter decrease IN ability, but strength of effect depends on mineralogy\(^13\),\(^14\)
- Changes in solubility of nutrients

Dependence of the chemical reactivity on particle material over Niger

data from Matsuki et al. (2010), 10.5194/acp-10-1057-2010
Dependence of the chemical reactivity on particle material over Niger

- **Sulfate**
 - Reactivity least dependent on particle material, maybe due to Ca sulfate being less hygroscopic than Ca nitrate and chloride, constraining in-depth processing, and/or due to dry sulfate formation.

- **Nitrate**
 - Increase of mixing by cloud processing evident for hygroscopic species, but also for silicate particles.

- **Chlorine**
 - Large differences in mixture → mixing by reaction or in aqueous phase, not mechanically.

In general, also for clear-sky conditions reactivity increases with relative humidity (not shown).

Data from Matsuki et al. (2010), 10.5194/acp-10-1057-2010
Mixing of dust with sulfate at Praia, Cape Verde

Particles are shown before and after extensive electron bombardment

silicate + sulfate

before 200 nm after

iron-rich grains

silicate + sulfate + ?

loss of volatile material

Mixing of dust and organics observed in Senegal

- **Internal mixing of dust** and carbonaceous matter is observed in a region with coexisting dust and biomass burning aerosol.
- Relative abundance of internally mixed particles versus pure ones is highly variable (5 to 50 % in this case study).
- Carbonaceous matter is distributed homogeneously around the particle → most probably organic coating.
- Is coating reversible or not (high adsorption efficiency of clays for organics)?

Deboudt et al. 2010, doi: 10.1029/2010JD013921
Transport/Deposition stage – particular importance of iron and phosphorus

DEPOSITION
- wet processing cloud impact
- indirect radiative impact
- sea-salt interaction
- terrestrial ecosystem impact
- marine ecosystem impact
- human/plant/animal health issues

TRANSPORT
- wet removal
- terrestrial radiative impact
- heterogeneous chemistry
- dry removal
- solar radiative impact
- photochemistry

EMISSION
- anthropogeneous/biomass burning aerosol admixture
- geological basement type of weathering surface transport
- chemical processing emission meteorology
Iron and phosphorus as nutrients

- As of today, Fe and P seem to be the most important nutrients, but knowledge about dust Ca, Mg, K supply is sparse.
- For soluble Fe fraction (i.e. bio-availability), a range between 0.01 and 80 % is reported\(^1,2\).
- Fe solubility depends on source composition, atmospheric processing, already existing Fe concentrations, dust concentration, biological influences\(^2,3\).
- Fe solubility increases with decreasing pH especially for low pH values\(^4\).
- Fe solubility was found to increase with atmospheric processing intensity\(^5\).
- Most soluble Fe comes from clay minerals, not from Fe oxides\(^6\).
- Fe-rich nanoparticles can form after acidic solution of soil\(^7\), which may be directly or at least at higher rates bio-available\(^2\).
- High aerosol Fe content in general does not mean similarly high bio-available Fe\(^5,6\).
- Total P content in Saharan dust between 0.04 and 1.7% (mostly below 1%)\(^8,9,10\).
- Acidification of aerosol (e.g. anthropogenic gas emissions) makes P more bio-available\(^11\).
- High relative humidity may be counterproductive in increasing P-availability due to more neutral pH\(^11\).
- P is assumed to be present as apatite, but also other phases are very probable.

3Shi et al. 2011, doi: 10.1029/2010GB003837
7Shi et al. 2009, doi: 10.1021/es901294g
8Guerzoni et al. 2005, doi: 10.1007/b107149
11Nenes et al 2011, doi: 10.5194/acp-11-6265-2011
Phosphorus in Saharan dust

Position of P on single dust particles

Deposition stage – variability and future needs

DEPOSITION
- wet processing cloud impact
- terrestrial radiative impact
- marine ecosystem impact
- human/plant/animal health issues

TRANSPORT
- wet removal
- terrestrial radiative impact
- heterogeneous chemistry
- dry removal

EMISSION
- solar radiative impact
- photochemistry
- anthropogeneous/biomass burning aerosol admixture
- geological basement type of weathering
- surface transport chemical processing emission meteorology
Deposition stage – phenomenology and dust composition

Type of deposition

- In Florida, most dust is deposited by wet deposition\(^1\)
- At Bermuda, most dust is deposited by dry deposition\(^2\)
- Mixing with sea-salt could increase particle size and promote (dry) deposition\(^{2,3,4,5}\)

Variability

- High temporal variation in mass: 30 to 90% of annual dust deposition occurs on 5% of the days, particularly at the edge of the Saharan dust plume\(^{6,7}\)
- Low temporal variation in composition: two years of measurement at Florida and Barbados\(^8\) and low spatial variation in composition over Florida\(^1\)
- Temporal variability (Fe/Ca) at Puerto Rico still in the same range as over the Ocean\(^{9,10}\)

General

- Dust arrives internally mixed with different species in America\(^{5,11}\)
- Information on speciation of major nutrients and their availability is sparse\(^{12}\)

\(^1\)Prospero et al 2010, doi: 10.1029/2009JD012773
\(^3\)Zhang et al. 2006, doi: 10.1016/j.atmosenv.2005.10.037
\(^4\)Deboudt et al. 2010, doi: 10.1029/2010JD013921
\(^7\)Bonnet et al. 2006, doi: 10.1029/2005JC003213
\(^8\)Trapp et al. 2008, doi: 10.1016/j.marchem.2008.10.004
\(^9\)Reid et al. 2003, doi: 10.1029/2002JD002935
\(^11\)Krejci et al. 2005, doi: 10.5194/acp-5-3331-2005
\(^12\)Okin et al. 2011, doi: 10.1029/2010GB003858
Composition of aerosol deposited in the northern Amazonian basin

soil dust refers to non-local (Saharan) dust, determined by trajectory analysis

particle diameter 0.5 to 2 µm

Aged sea salt + soil dust

Biogenic

Organic

Aged sea salt + organic

Soil dust + organic

Sea salt + organic

What is missing?

General effects

- **Emission:** We have seen considerable amounts of sulfate already on dust in Africa – what is the degree of processing at the soil surface, and how much is it processed during transport?
- **Emission/Transport:** Regarding the Fe solubility and bio-availability, we need to know more on their dependence on source mineralogy, on in-soil and in-air processing (which gaseous or particular species yield what effect?), and how these impact on ecosystems with shorter or longer retention time.
- **Emission/Transport:** Similar questions arise for phosphorus availability, but the level of knowledge is even lower than for iron.
- **Transport:** For cloud impact and also the dust processing, we need to know more about the particle mixing state – preferably spatially (3D) and particle-size-resolved.
- **Transport/Deposition:** We know that dust has an non-linear impact on cloud droplet and ice nucleation and, thus, precipitation, but which are the dominating effects? – Possibly by a combination of an intensive field campaign and subsequent quantification (monitoring).
- **Transport/Deposition:** Besides Fe and P, also Ca, Mg and K from African dust are termed as potential nutrient for terrestrial ecosystems – what is their impact in relation to other sources? How changes their bioavailability by processing dependent of different atmospheric acids?
- **Transport/Deposition:** We know that organic coatings exist on dust – do they derive from biomass burning (only), from marine processes, can they be acquired just before deposition? What do they do to cloud impact (CCN, IN properties), and can organic acids promote bioavailability in time?
- **Deposition:** Does internal mixing increase deposition flux? Does particle shape have an impact?
What is missing? (continued)

Spatial and temporal variation

- Dust sources have small-scale compositional variation and are not time-invariant
 - Is it feasible to create a *adequately*-resolved “cadaster”? What can we *generalize*?
 - What is the influence of this *variation* on the *receptors* (clouds, ecosystems)?
- Several intensive field experiments with different foci yielded information on dust composition, but the longest ones lasted one season
 - How should they be *rated*, given a considerable *variability* on *inter-seasonal* scale (NAO) and the strong *event*-like occurrence of large dust loads?
- Many measurements show high daily variation, measures for variability change as single days are excluded → measurements on too short time scales to capture variability
 - Need of *long-term monitoring* (in terms of composition, single particle measurements would be useful)

With respect to complexity of dust interactions

- “Supersite” monitoring – which locations can be set-up upgraded?

- We know that dust plumes can be sharp-edged on inhomogeneous (particularly on vertical axis, but also on horizontal one), but we can only monitor at single spots continuously
 - Need of *network-like observations* (aircraft- and ship-based monitoring, e. g. CARIBIC package)